منابع مشابه
Quaternionic Contact Einstein Structures and the Quaternionic Contact Yamabe Problem
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal deformations sending the standard flat torsion-free quaternionic contac...
متن کاملInstitute for Mathematical Physics Hypercomplex Structures Associated to Quaternionic Manifolds Hypercomplex Structures Associated to Quaternionic Manifolds
If M is a quaternionic manifold and P is an S 1-instanton over M , then Joyce constructed a hypercomplex manifold we call P (M) over M. These hypercomplex manifolds admit a U(2)-action of a special type permuting the complex structures. We show that up to double covers, all such hypercomplex manifolds arise in this way. Examples, including that of a hypercomplex structure on SU(3), show the nec...
متن کاملquaternionic contact structures in dimension 7
The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n− 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be the...
متن کاملAlmost Hermitian Structures and Quaternionic Geometries
Gray & Hervella gave a classification of almost Hermitian structures (g, I) into 16 classes. We systematically study the interaction between these classes when one has an almost hyper-Hermitian structure (g, I, J,K). In general dimension we find at most 167 different almost hyper-Hermitian structures. In particular, we obtain a number of relations that give hyperKäher or locally conformal hyper...
متن کاملFano Manifolds, Contact Structures, and Quaternionic Geometry
Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2010
ISSN: 0166-8641
DOI: 10.1016/j.topol.2010.09.005